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Problems and Solutions

1 A tiling of the plane with polygons consists of placing the polygons in the plane so that interiors of
polygons do not overlap, each vertex of one polygon coincides with avertex of another polygon, and no
point of the plane is left uncovered. A unit polygon is apolygon with al sides of length one.

Itisquite easy to tile the plane with infinitely many unit squares. Likewise, it iseasy totilethe plane
with infinitely many unit equilateral triangles.

(@

(b)

Prove that there is atiling of the plane with infinitely many unit squares and infinitely many unit
equilateral triangles in the sametiling.

Provethat it isimpossibleto find atiling of the plane with infinitely many unit squares and finitely
many (and at least one) unit equilateral trianglesin the sametiling.

Solution:

(@

(b)

This can be done easily with parallel rows of squares and triangles, as shown.

Of course, other tilings are possible.

Many people received only partia credit for part (b), because their arguments were not rigorous.
In order to show that atiling is not possible, you need a completely general argument, that handles
all cases. Since there are infinitely many cases, this can be problematical. The way out is a very
neat idea known as the Extreme Principle, which essentially says, “focus on the largest or smallest
entity.” The advantage of this approach isthat we now are reduced to studying just one polygonin
the infinite plane.

Method 1: Suppose, to the contrary, that there were such atiling. Since there are only finitely
many triangles, there is a vertex that is “northenmost.” If there are ties, pick the vertex that lies
furthest to the “east.” At most one other triangle (located to the west) can share thisvertex. Thisis
a contradiction, since the only way that triangles and squares can share avertex in atiling iswith
3 triangles and two squares (in order to add up to 360 degrees).

Method 2:

Suppose, to the contrary, that there were such atiling. Since there are only finitely many triangles,
they are contained in abounded region . Let N be asquare that liesto the “north” of (i.e., itssouth
sideisfurther north than any pointin). Likewise, let E, W, Sbe squaresthat lie, respectively, east,
west, and south of .



Observe that the east and west neighbors of N must be squares, since there are no triangles that
far north. Thus, there is an infinite east-west chain of connected squares containing N. Likewise,
there is an infinite east-west chain of squares containing S, and there are two infinite north-south
chains, one containing W, and one containing E.

These four chains meet, forming a rectangular boundary of connected squares that completely
encloses. Now we have acontradiction: Thisrectangular region hasrational (in fact, integer) area,
yet it istiled with a non-zero number of equilateral triangles, plus, perhaps, some squares. But the
area of each triangle is +/3/4, and hence the area of the entire collection of triangles and squares
inside this rectangular region isirrational.
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Method 3: Suppose that there were such atiling. By similar reasoning to method 2, we deduce
that thetiling is“eventually” all squares; thusit can beformed by starting with an all-squarestiling,
and then removing a finite number of sguares, and filling in the “holes’ with a finite number of
triangles. The“holes’ only have 90-degree angles; they can never be filled with triangles, since 90
is not a multiple of 60.

2 A givenline passesthrough the center O of acircle. Thelineintersectsthecircleat points Aand B. Point
P liesin the exterior of the circle and doesnot lie on theline AB. Using only an unmarked straightedge,
construct alinethrough P, perpendicular totheline AB. Give completeinstructionsfor the construction
and prove that it works.

Solution: The following construction works:

1. Draw alinefrom P to A, intersecting the circle at C.
2. Draw alinefrom P to B, intersecting thecircleat D.
3. Draw lines AD and BC, and let E be their point of intersection.
4. Draw alinefrom P through E; thiswill be the desired perpendicular line.
Thisworks because AD 1. PB and BC L PA; hence AD and BC are adtitudes of triangle AP B.

It is well known that the three atitudes of a triangle intersect in a point, so E is the intersection of all
three altitudes. It follows that the line through PE is an altitude.

3 NASA has proposed populating Mars with 2,004 settlements. The only way to get from one settlement
to another will be by aconnecting tunnel. A bored bureaucrat draws on amap of Mars, randomly placing



N tunnels connecting the settlements in such a way that no two settlements have more than one tunnel
connecting them. What is the smallest value of N that guarantees that, no matter how the tunnels are
drawn, it will be possible to travel between any two settlements?

Solution: The problem isequivalent, in general, to finding the least number of edges required so that
agraph on n verticeswill be connected, i.e., one can reach any vertex from any other vertex by following
the edges of the graph. (We are letting settlements be vertices and tunnels be edges, of course).! This
vaueis (") + 1.

Here () counts the number of all possible pairsin agroup of m people, or equivalently, the number
of edges in a graph with m vertices where every two vertices are connected with an edge. This latter
graph is called a complete graph on m vertices.

To see that the minimum number of edges must be (",%) + 1, wefirst observe that it cannot be less
than this, since n — 1 vertices can be connected to one another with (”;1) edges, leaving the nth vertex
isolated.

Next we will show that (”;1) + 1 edges will guarantee that the graph is connected.

Method 1: Suppose to the contrary, that the graph is not connected. Then it consists of k connected
components, each containing v, vz, . . ., vk vertices. Each component has at most (%) edges. We claim

that
v1 v2 Vk n-1
(2)+(3)++(3)= (=)
which establishes the contradiction.
The above inequality an easy consequence of the two-term inequality

()= (72

which can be established by considering a complete graph on a vertices (with (g) edges) and acomplete
graph on b vertices (with (g) edges, and then “gluing” them together on one vertex. This produces anew
graph with a 4+ b — 1 vertices which must have at most (a“z’_l) edges.

Method 2: Since there are at most (5) tunnels possible, there will be at most

) (7)) =2

tunnels that are not drawn. Call these “antitunnels” Suppose to the contrary, that the graph is not
connected. Then two settlements, A and B will not be connected. Thus, A and B are joined by an
antitunnel. Furthermore, for each settlement X that is neither A nor B, there can be no path drawn from
A to X and then from X to B. In other words, at least one of the connections AX or XB must be an
antitunnel. However, thiswould require n — 2 antitunnels, in addition to the antitunnel joining A and B.
Thus n — 1 antitunnels are needed, but at most n — 2 are available; a contradiction.

For introductory information about graph theory, there are many good books. See, for example, Pearls of Graph Theory
by Hartsfield and Ringel.



4 Suppose oneis given n real numbers, not al zero, but such that their sum is zero. Prove that one can
|abel these numbersay, ay, . . ., a, in such amanner that

ajap +apaz+ - -+ an—1an + anag < 0.

Solution: Let the given numbers (in an arbitrary order) be by, by, ..., by. For every possible
permutation r of {1, 2, ..., n}, consider the sum

br1ybr2) + br2)br@) + -+ + Brn—1)Br(n) + Br )bz (D).

We wish to show that some such sum is negative, so assume otherwise. For every two distinct elements
i,j €{1,...,n}, theterm byb; appears N times among these sums, where N does not depend oni, j,
by symmetry. (In fact, one can show that N = n(n — 2)!.) Each such sum isassumed to be nonnegative;
adding these inequalities for al permutations sz, and dividing by N, we have

Zbibj > 0.

i#]
However, we also know that ) ; bi2 > 0 (strictly, since not al b; are zero). Thus

(by+-- +bn)?=>Y b2+ > bib; > 0.
i i#]
But since by + --- + b, = 0, we have a contradiction. So our assumption was false, and the needed
negative sum does exist.

5 Find (with proof) all monic polynomials f (x) with integer coefficients that satisfy the following two
conditions.

1. f(0) = 2004.
2. If x isirrational, then f (x) isalsoirrational.

(Notes: A polynomial ismonicif itshighest degreeterm hascoefficient 1. Thus, f (x) = x*—5x3—4x+7
is an example of amonic polynomial with integer coefficients.

A number x isrational if it can be written as a fraction of two integers. A number X isirrational if
it isarea number which cannot be written as a fraction of two integers. For example, 2/5 and —9 are
rational, while +/2 and = are well known to beirrational .)

Solution: The polynomial x + 2004 certainly meets the two conditions. In fact, this is the only
one. We will prove this using three ingredients: the infinitude of primes, the Rational Roots Theorem
for polynomials, and the approximation principle that x" dominates any polynomial of lower degree, for
large enough x.

Note that the only monic constant polynomial is f (x) = 1, which fails Condition 1; and that the only
monic degree 1 polynomial satisfying Condition 1is f (x) = x 4+ 2004. Thus, we need to eliminate all
polynomials of degree 2 or more. To thisend, it is sufficient to show that, given any monic polynomial



f (x) with integer coefficients of degree 2 or more, there exists an integer a such that f (x) +a = 0has
anirrational solution x (for then f (x) = —aisrational for an irrational number x).

Let f(X) = X" + ch_1Xx""1 + ... 4 c1x + Co be apolynomia with integer coefficients, withn > 2.
It may be the case that f (x) has no real roots, for example, if n is even and the graph of y = f(x)
lies above the x-axis. But certainly, if a is a sufficiently large negative integer, we can guarantee that
f (x) +a = 0will have at least onereal solution. In fact, by further making a alarger negative number,
we can ensure that, say, the largest of the solutions of f (x) 4+ a = 0 has absolute value bigger than 1:
IX] > 1.

Moreover, regardiess of how large a negative number a needs to be, we can choose a so that
Co +a = —p where p isprime. Thisis because there are infinitely many prime numbers. Now we
can apply the Rational Roots Theorem, according to which all rational solutions rg of the monic integer
coefficient polynomial f (x) + a must satisfy: s dividesthe leading coefficient of f (x) andr dividesthe
last (freeterm) of f (x); inother words, sdivides1andr divides p. Since pisprime, thisgivesonly four
possiblerational solutions: x = +1, +p. Since we have ensured that |x| > 1, we areleft with x = +p.

Let g(x) = f(x) 4+ a. From the well known inequalities of absolute values |y + z| > |y| — |z| and
ly + z| < |yl + |z|, we obtain:

190)] = X" + CroaX™ 4 L ax — pl > X = [eh-aX™ L ax — Pl
andaslongas|x| > 1andn > 2;

lCh—a|IX|" 4 -+ fealIX] + p
(Icn_al + - - - + e x|" L 4 pn L.

len X"t ax—p| <
<

If welet S=|ch_1] + - - - + |C1], we can put everything together:
l9(Ep)| > p"— (S+Dp"t=p"(p- (S+ D).
Since Sis fixed, we can choose the prime p large enough so that p > S+ 1, and hence the quantity

p — (S+ 1) ispositive. Therefore, g(£p) # 0.

Thus g(x) has areal zero x, which cannot be rational since the only possibilities for rational zeros
=+ p fail to be zeros by the above. We conclude that x is an irrational root of g(x), whereas f (x) = —a
isan integer, hence rational. This contradicts Condition 2, and eliminates al polinomials of degree 2 or
more.

Finally, we are left with only one possible solution: f (x) = x + 2004.



